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Abstract

An Arbitrary Lagrangian Eulerian (ALE) formulation involving the use of an operator splitting procedure is
presented. In solid mechanics applications, ALE formulation is employed to overcome mesh distorsion problems in

®nite deformation. Here, we present a new application to ¯uid/structure interaction problems: determining the ®lm
thickness h in lubricated contact analysis using a method of characteristic in the framework of a ®nite element
method. Hydrodynamic and elastohydrodynamic lubrication regimens are analyzed using an averaged Reynolds

equation. The friction stress is then expressed in terms of lubricant parameters such as the ®lm thickness and
viscosity and forming process parameters such as the pressure, forming speed and surface roughness. The e�ciency
of the method is illustrated in the case of three examples. The ®rst one involves the ALE formulation developed

here in sheet metal forming and the others are applications to lubricated contact analysis. 7 2000 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

In studies on sheet metal forming processes, large deformations have to be taken into account. When
®nite element modeling approaches are used, this requires paying particular attention to the mesh
characteristics. In structures subjected to heavy loading, the components are liable to be deformed, and
this can a�ect the quality of the solution.

In order to avoid having to perform complex mesh re®nement procedures, which considerably
lengthen the calculation time, an Arbitrary Lagrangian Eulerian (ALE) formulation was used here with
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a view to controlling the mesh characteristics. For this purpose, an additional set of unknowns relating
to an independent referential domains introduced (Hugues et al., 1981), corresponding to the
displacements of the mesh nodes, but independent a priori of the displacement of the material particles.

This method was ®rst developed in ¯uid mechanics and has been successfully applied in Refs. (DoneÂ a,
1978; Belytschko and Kennedy, 1978) to ¯uid/structure coupling problems where the ¯uid meshing in
the ¯ow is Eulerian and links up with the meshing of the structure interfaces.

An ALE formulation has been implemented in a solid mechanics ®nite element software program. An
operator splitting technique makes it possible to divide the computations into two distinct steps: a
Lagrangian step and an Eulerian one.

Here, we investigate a new application of the ALE approach to ¯uid/structure coupling problems. It
is proposed to focus in particular on the e�ects of the lubricant on the friction occurring between the
tool and the sheet metal.

Our aim here was to develop a friction model depending on local contact conditions. The friction
coe�cient, which was determined experimentally, depends on the microscopic contact parameters,
particularly on the pressure, the velocity and in some cases on the lubricant viscosity. Tribologists have
classically proceeded by drawing Stribeck curves giving the evolution of the friction coe�cient versus the
Sommer®eld parameter H � �Zv�=P, where Z is the lubricant viscosity, v the velocity and P the pressure.
On these graphs, the strong dependence of m on these parameters can be observed. At low values of H,
m reaches is largest values, corresponding to dry friction. When H is large, the opposite occurs, and m
reaches its lowest values, which correspond to a completely ®lm lubricated friction. In the mixed
regimen, mid-way between these two states, the value of the friction coe�ent decreases very fast.

Numerical models developed by Carleer (1997) and Chabrand and Chertier (1996) in the framework
of a ®nite element formulation, working on the local contact node scale, have yielded a law of evolution
for the macroscopically identi®ed friction coe�cient. The friction coe�cient depends on the local
contact variables, the sliding velocity and the normal contact force. In Ref. (Chabrand et al., 1998), it
was established that in the modeling of a classical tribological experiment with ¯at dies, stick/slip
phenomena can be observed, depending on the microscopic pressure and velocity. The frequencies of
these oscillatory phenomena were found to be in the audible frequency range. The point of this study is,
therefore, to illustrate the e�ects of local changes in the friction coe�cient.

The contact between two metal surfaces also depends on the micro-geometry at the surfaces of the
bodies, which is not properly accounted for in a macroscopic friction analysis. In particular, it has been
observed (Ike and Makinouchi, 1990) in the unlubricated case that microscopic asperities can lead,
during the loading of the test-piece, to the occurrence of plastic deformations, which develop towards
the core. These plastic deformations are not susceptible to macroscopic analysis, with which only elastic
deformations are observed in the case of ¯at dies.

In addition, the shearing of these asperities can increase the friction locally. The association of these
two phenomena (the ¯attening and shearing of microscopic asperities) can then a�ect the morphology of
the deformation, damage the surface ®nish and lead to the tearing of the coating of coated sheet metal
pieces.

It seemed necessary to develop an improved friction model for dealing with these two classes of
parameters, i.e., those which are external to the interface, the pressure and the velocity, and those which
are internal, the surfaces roughness, and if necessary, a third body, the lubricant. A friction model was
developed in the framework of hydrodynamic and elastohydrodynamic regimens, based on the model
described in Ref. (Patir and Cheng, 1978) and on a procedure introduced in Ref. (Wilson and Sheu,
1988), whereby the determination of the thickness of the ®lm, calculated by using a Eulerian
characteristics method, is linked using ALE formulation to the deformations undergone by the structure,
expressed in Lagrangian terms. In the ®rst part of the paper, we present the ALE formulation which has
been developed and integrated into the ®nite elastoplastic part of our software program. The validity of
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this formulation was con®rmed in the case of a coining test. The second part deals with the lubricated
friction model. The coupling between solid and ¯uid analysis is illustrated in the case of two sheet metal
forming examples.

2. General theory of ALE formulation

2.1. Why an ALE formulation?

We consider a solid S included in R 3. The set of particle positions composing S is called its
con®guration. In ®nite deformation, two di�erent con®gurations have to be distinguished. The initial
con®guration (material domain) is denoted by C0, and the current con®guration (spatial domain) by Ct

(Fig. 1).
In solids mechanics, in order to track the material particle, the Lagrangian formulation is generally

used to describe the motion of S from C0 to Ct via a mapping:

j:C0��0, T�4Ct

where ]0, T[ denotes an open time interval included in R.
The particle which occupies the spatial point M0 at position X � �X1, X2, X3� in C0 occupies the

spatial point M at position x � �x1, x2, x3� in Ct, with j � �X, t�:
In the ®nite element discretization, the initial con®guration is covered with a mesh. A node is then

associated with the same material particle throughout the deformation process. The mesh is then
deformed along with the body. However, this method su�ers from numerical di�culties when the
elements are too severely distorted or when complex contact conditions have to be dealt with.

One alternative consists of choosing a ®xed mesh. This formulation, called the Eulerian formulation,
is mostly used in ¯uid mechanics, where the current time step is the only one studied. However, the
migration of material particles on the ®xed mesh brings about convective e�ects and in ®nite
deformation, it is still di�cult to treat the free surface.

In order to overcome these di�culties, an ALE formulation is employed which combines the
advantages of the two procedures described above. The mesh is deformed as in Lagrangian formulation,
but independently from the body, as in Eulerian formulation.

Fig. 1. Diagrams of domains and mappings for ALE formulation.
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2.2. Referential con®guration

The general theory of ALE formulation is based on choosing a third con®guration Cref, called the
reference con®guration, which is independent of both the material (C0) and spatial (Ct ) ones. The
referential coordinate is denoted w: We assume that the reference domain is related to the spatial one by
the mapping ĵ:

ĵ:Cref��0, T�4Ct

Every point M in Ct is the image of a unique point MÃ in Cref (through ĵ), and of a unique point M0 in
C0 (through j). The spatial coordinates of M satisfy x � ĵ�w, t� � j�X, t�: Table 1 gives the motion,
displacement and velocity in the initial and referential con®gurations.

Comment. In addition, we assume that j and ĵ are su�ciently smooth functions of each argument.
Consequently, we can de®ne a third mapping between Cref and C0 as C � jÿ1 � ĵ:

In ®nite element numerical discretization, as in Lagrangian formulation, the referential con®guration
is covered with a mesh. The particles composing Cref are, therefore, associated with mesh nodes. Each
node is also associated with one and only one material particle in the initial con®guration C0 using C:

During the deformation process, the material particle moves with j, whereas the mesh node moves
with ĵ: Consequently, in the current con®guration Ct, the node mesh is associated with a di�erent
material particle than in C0. Based on these considerations, ĵ describes the movement of a grid. For this
reason, û and v̂ are called the grid displacement and the grid velocity, respectively. Depending on the
formulation used, û and v̂ have the following values:

. In Lagrangian formulation, Cref is combined with C0 (i.e. j � ĵ� and the displacement and velocity of
the grid are equal to those of the associated material particles.

. In Eulerian formulation, the mesh remains ®xed. Cref is combined with Ct (i.e. 8t 2�0, T�ĵ � Id� and
the grid displacement and velocity are zero.

. In ALE formulation, a mesh point moves �û 6� 0� but does not remain associated with the same
material particle �û 6� u).

As in the Eulerian description, the di�erence between material and mesh displacement has convective
e�ects. It is, therefore, necessary to introduce a convective velocity denoted c � vÿ v̂, which is the
relative velocity between the material and the mesh.

Table 1

Material and referential description

Material Referential

Motion x � j�X, t� x � ĵ�w, t�
Displacement u � xÿ X û � xÿ w
Velocity

v � du

dt
� @x

@ t

����
X

v̂ � dû

dt
� @x

@ t

����
w
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3. Basic equations in ALE formulation

The conservation laws in the ALE formulation are determined from their expression written on the
current con®guration using a referential derivative presented below.

3.1. Time derivative relation

In Lagrangian descriptions, the balance laws require time derivatives of functions depending on
material coordinates X. Taking a function f de®ned on the current con®guration Ct (according to the
spatial coordinates x ), we can write:

f�x, t� � f
ÿ
j�X, t�, t� � ~f�X, t� �1�

Using the classical material time derivative de®ned by _f � �@ ~f=@ t�jX, the following spatial time derivative
is obtained:

_f � @ f

@ t

����
x

�v � rf �2�

where v is the material velocity and rf the tensor gradient f.
In ALE formulation, since w is the computational reference coordinate, it is convenient to express f in

terms of w and t:

f�x, t� � f
ÿ
ĵ�w, t�, t� � f̂�w, t� �3�

We de®ne a referential derivative �f as:

�f � @ f̂

@ t

�����
w
� @f

@t

����
x

�v̂ � rf �4�

which can be related to the material derivative by:

_f � �f� crf �5�
with the convective velocity c.

3.2. Conservation laws in ALE formulation

3.2.1. Mass conservation equation
Let the volume dv in Ct be the image of a volume dV in C0, related by:

dv � J dV �6�
where J � det F and F � grad j:

Writting r for the mass density of dv and r0 for the mass density of dV, the classical mass
conservation equation becomes:

Jr � r0 �7�
The derivative form of this equation gives the material conservation law of mass:
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_r � ÿr div v �8�
Using an ALE formulation, the corresponding referential equation of Eq. (8) is obtained from relation
(5):

�r � ÿr div vÿ crr �9�

3.2.2. Momentum and energy conservation equations
The referential form of momentum and energy conservation equations is determined using a similar

approach to that used for the continuity equation. The momentum conservation equation is written as
follows:

r �v � div s� f v ÿ rcrv �10�
where f v stands for the volumic force density and s stands for the Cauchy stress tensor. Taking W to be
the internal rate of energy, then the conservation equation is:

�W � s � rv� rrÿ div qÿ crW �11�
where r is the volumic rate of heat transfer and q the heat ¯ux.

Comment. The convective additional term in each equation makes ALE equations much more di�cult to
solve numerically than Lagrangian ones (where 8f �f � _f and c � 0).

3.3. Equations governing the continuum

3.3.1. Equilibrium
We take a quasi-static approach neglecting the inertial e�ects in ®nite deformation, which is

appropriate for forming processes such as those studied in the present investigation. The equation of
motion is given by the momentum conservation equation (10), in which the additional convective term
disappears in the ®rst step:

div s� f v � 0 in Ct �12�
In addition, we use the classical boundary condition (without contact):

f s � s � n �13�
on the part of G called Gf, which is subjected to surface force density f s and

u � �u �14�
on the part of G called Gu, which is subjected to the prescribed displacement (with the usual boundary
properties G � Gf [ Gu and Gf \ Gu �b).

3.3.2. Constitutive equation
In the present study, we deal with an elastoplastic behavior based on the multiplicative decomposition

of the gradient deformation F � Fe � Fp into its elastic and plastic parts, as proposed by Lee (1969). The
behavior between the intermediate con®guration (de®ned by Fe) and the current one is characterized by
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a hyperelastic response. The constitutive law of the material is determined from the free energy density
function W, which is an isotropic function of the elastic part of the left Cauchy±Green strain tensor
be � FeFeT

and of the equivalent plastic strain �ep: Neglecting superscript e, the Kirchho� stress tensor
can then be expressed as follows in the current con®guration (see, for example, Sidoro�, 1982):

tij � 2bij

�
@W

@b

�
ij

�15�

or in the initial con®guration:

tij � 2

J
FiIFjJ

�
@W

@C

�
IJ

�16�

where C � FtF is the right Cauchy±Green tensor.
The plastic ¯ow rule is described by a classical von-Mises criterion with isotropic hardening:

f
ÿ
t, �ep

� � ������������������������������
3

2
dev�t�:dev�t�

r
ÿ A0

ÿ
�ep

�
R0 �17�

where A0��ep� stands for the thermodynamic force associated with the hardening variable �ep:
The evolution of the plastic strain rate d p and that of the internal hardening variable are written for

lr0 as:

d p � l

�
@f

@t

�
� l

����
3

2

r
s

ksk
_�ep � ÿl @f

@A0
� l �

����������������
2

3
d p:d p

r
9>>>>=>>>>;lR0 f

ÿ
t, �ep

�
0R l � f � 0 �18�

The energy density used here is presented in Ref. (Simo and Miehe, 1992) and written:

W � K

2

�
1

2
�J 2 ÿ 1� ÿ ln J

�
� 1

2
m�Ib ÿ 3� �19�

where m is the second Lame coe�cient, K the bulk modulus and Ib the ®rst invariant of b.

3.3.3. Principle of virtual works
We introduce a convective referential system into Cref. In the referential con®guration, the convective

referential system (GÄ1, GÄ2, GÄ3) is neither ®xed (Cartesian referential system) nor associated with material
particles (material referential system). This choice is justi®ed by the principle of ALE formulations, in
which the material deformation is described without remaining associated with the same particle. We
denote ( g1, g2, g3) in the current con®guration and (G1, G2, G3) in the initial con®guration the images of
this convective referential system. The metric tensor associated with the covariant convective basis ( g1,
g2, g3) in Ct is denoted by m:

m � mabg
a 
 gb where mab � ga � gb

The equilibrium equations (12)±(14) lead to the principle of virtual work. Let Z be the kinematically
admissible variation of j de®ned on Ct.

The spatial principle of virtual works is given by:
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G�j, Z� �
�
Ct

sij
ÿrcs

mZ
�
ij

dOt �
 
ÿ
�
Ct

f v
i Zi dOt ÿ

�
G f
t

f s
iZi dGt

!
� 0 �20�

where rcs
mZ is the symmetric covariant gradient of Z associated with the metric m:

ÿrcs
mZ
�
ab
� Z�a, b� � Zc

��
a
mcb � Zc

��
b
mca

2

Noting Z � j the material version of the kinematically admissible variation (which is also denoted Z
below to simplify the writing), the material form of the principle of virtual works is expressed as
follows:

G�j, Z� �
�
C0

2FiIFjJ

�
@W

@C

�
IJ

ÿrcs
mZ
�
ij

dO0 ÿ
�
C0

0f v
IZI dO0 ÿ

�
G f
0

0f s
IZI dG0 � 0 �21�

where 0f stands for the force densities transported onto C0.
The linearization of G in the ALE description (i.e. involving variable w� requires introducing into the

virtual work principle the mappings ĵ and c instead of j:

G�j, Z� � G
ÿ
ĵ, c, Z

� � 0 �22�

Comment. Although there is no convective term in Eq. (20) or (21), the particularity of ALE
formulation (i.e. Cref being independent of C0) shows up in this linearization. In fact, the only unknown
j in the classical Lagrangian formulation is replaced by the two unknowns ĵ and c:

The numerical solution of this non linear variational equation is obtained with an incremental
Newton±Raphson scheme. Let w and U be the kinematically admissible variation of ĵ and c,
respectively. Taking the referential con®guration, we use w � ĵ and U � c: The ®rst order Taylor
development leads to:

G
ÿ
ĵ� w � ĵ, c�U � c, Z� � G

ÿ
ĵ, c, Z

��DĵGw � ĵ�DcGU � c � 0 �23�

where DĵGw � ĵ (resp. DcGU � c� is the FreÂ chet derivative of G�ĵ, c, Z� with respect to ĵ (resp. c).
In the ®rst FreÂ chet derivative DĵGw � ĵ, where all the expressions written for the initial con®guration

are independent of ĵ, we obtained:

DĵGw � ĵ �
�
C0

K abcd
1

ÿrcs
mw
�
cd

ÿrcs
mZ
�
ab
�tabZc

��
a
wb
��
dmcd dO0 �24�

whereas a di�culty arising in the calculation of DcGU � c is that the initial con®guration depends on c
and the FreÂ chet derivative of C0 and G0:

DcGU �C �
�
C0

�
ÿ K abcd

2
�r#sU�cd

ÿrcs
mZ
�
ab
ÿ2tabU #c

��
b

ÿrcs
mZ
�
ac
�tabU A

��
A

ÿrcs
mZ
�
ab

�
dO0

�DCGextU � c �25�

We denote U #ajb�U AjBFa
AFBÿ1

b the ``push forward'' of the covariant gradient of U in C0 and �r#sU �cd
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� �1=2��U #cjamcb � U #cjbmca� its symmetrical expression. In Eqs. (24) and (25), K abcd
1 and K abcd

2 are
fourth-order tensors given in Ref. (Yamada and Kikuchi, 1993).

Gext is the work of external forces in Eq. (21) and its FreÂ chet derivative with respect to ĵ is equal to
zero, but that with respect to C leads to:

DCGextU �C � ÿ
�
C0

�
0f v

aZ
aU A

��
A�0f v

a, A ZaU A
�

dO0

ÿ
�
G f
0

�
0f sa Z

a

�
U A

��
AÿU A

��
CNANBM

BC

�
� 0f s

a, A ZaU A

�
dG0 �26�

where 0f v
a, A� �@ 0f v

a�=�@X A� and N is the exterior normal unit vector to G0 and M the metric tensor
associated with the initial con®guration.

4. Numerical integration

4.1. Finite element discretization

The reference con®guration is meshed with isoparametric ®nite elements. The material and spatial
coordinates X and x are expressed in terms of the reference coordinates using the classical shape
functions Na:

XI �
Xnel
a�1

N a�w�X a
I and xi �

Xnel
a�1

Na�w�xa
i �27�

where nel is the number of nodes per element. The ®nite element discretization of the linearized
principal of virtual work leads to a tensor equation:

K1U� K2w � F �28�
where F is the residual equilibrium vector and K1 (resp. K2) is the matrix form of the fourth-order
tensor introduced above. Explicit forms of these matrices can be found in Ref. (Yamada and Kikuchi,
1993).

If U and w are unknown (i.e. fully coupled ALE method), the linear system is rectangular and does
not have a unique solution. Scheurs et al. (1986) have solved this fully coupled system of equations by
taking a virtually elastic body to control the mesh distorsions. Another way of overcoming this
numerical di�culty is to introduce equations for computing the mesh displacement, and some authors
have used ¯uid mechanics equations based on streamline techniques (see, for example, Belytschko and
Kennedy, 1978; Hugues et al., 1981; Liu et al., 1988; Liu et al., 1986).

In the present study, in order to implement the ALE formulation in an existing Lagrangian code, we
adopt another approach. At every time step, an operator splitting technique is used to eliminate half of
the unknowns (see, for example, Benson, 1989; DoneÂ a et al., 1982; Huetink and van der Lugt, 1990;
Lugt et al., 1993; Ponthot, 1995; Gaston et al., 1996; Potapov and Jacquart, 1996). This technique is
analogous to the predictor corrector algorithm used in the numerical integration of the constitutive
equations:

. A Lagrangian step is ®rst performed in which the mesh moves with the material.

. The Eulerian step consists of two parts:

F. Martinet, P. Chabrand / International Journal of Solids and Structures 37 (2000) 4005±4031 4013



* The nodal pattern has to be de®ned in order to create a new mesh under qualitative or quantitative
criteria.

* The solution variables have to be remapped from the former mesh to the present one.

The Lagrangian step is a classical Lagrangian calculation, corresponding to choosing c � Id (i.e. U � 0�
that corresponds to j � ĵ: The advantage here is that the method can be easily implemented in a
Lagrangian code.

4.2. Eulerian step

4.2.1. Remeshing the structure
The ®rst part of the Eulerian step consists of remeshing the structure based on qualitative (element

shape) or quantitative (mesh re®nement on high strain location) criteria. However, contrary to the
classical remeshing techniques, the remeshing is performed here at every time step and the topology of
the initial mesh is preserved: remeshing is done at constant numbers of elements. Due to the bijective
properties of the mapping ĵ, one point in Cref has to correspond to a single point in Ct. This condition
ensures that the boundaries of the new mesh and those of the mesh obtained at the end of the
Lagrangian step coincide. The remeshing is then started by repositioning the nodes of the boundary
called the master lines. A trans®nite mapping method proposed by Haber et al. (1981) is then used to
generate the internal mesh.

To account for complex geometries, the structure is divided at the beginning of the process into
regions called macroregions bounded by master lines, where the nodes are ®rst repositioned.

4.2.2. Transport step
The second part of the Eulerian step is dedicated to remapping the unknowns involved in the

problems. Hyperelastic constitutive law requires the transport of the left Cauchy±Green tensor b, and
the elastoplastic response requires that of the equivalent plastic deformation �ep:

As remeshing is carried out at each time step with a constant number of Gauss points, the distance
between the non-remeshed and remeshed integration points is small. According to these properties, a
®rst order Taylor formula gives a su�cently accurate relation between f ngp, the unknown value (i.e. at
new Gauss point) and f lgp, the value obtained at the Gauss point prior to the remeshing (i.e. at the
lagrangian step Gauss point) (Ponthot, 1995):

f ngp � f lgp � dpg�rf�lgp �29�
where dpg is the distance between the former and present integration points.

To determine �rf �lgp (gradient value of f at material Gauss point), we have to construct a continum
®eld from the local value of f. For this purpose, we use the nodal interpolation:

f lgp�xa, ya� � Ni�xa, ya�f ln
i a 2 �1, nel� �30�

where f ln
i is the unknown nodal value and Ni�xa, ya� the value of the shape function at the Gauss

points. Solving Eq. (30) makes it possible to determine the nodal value f ln
i and leads to a local least

square smoothing matrix which is identical to that obtained by Hinton and Campbell (1974).
The originality of the present method is that it provides a choice between two remapping methods.

The ®rst one involves transporting the values between Gauss point locations in the initial con®guration
C0 (Fig. 2):

. At every non remeshed element, assuming that Gauss points remain in the same element, we
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determine the isoparametric coordinates of the new integration points (Step (1)).
. During the Lagrangian step, the isoparametric coordinates remain the same as in the initial

con®guration. Using the relation (29), b and �ep are transported to the new Gauss point location in the
initial con®guration (Step (2)).

. In order to check the equilibrium in the new mesh, we compute the internal variables along a material
path from the initial con®guration to the current deformed one (Step (3)).

The second method consists of directly remapping the internal variables (i.e. those between the mesh
obtained at the end of the Lagrangian step and the current one, see Fig. 3). It might then be necessary
to check the equilibrium and elasticity criteria on the new mesh. However, the transport operations are
carried out between very closely neighbouring points, and any lack of equilibrium can be overcome after
some iterations during the next time step.

5. Simulating a coining process

The above procedure was applied to the numerical simulation of a coining process. An initially
rectangular work-piece is crushed by a rigid tool with a prescribed vertical displacement. The
geometrical and loading conditions are given in Fig. 4. The material is elastoplastic with linear isotropic
hardening (see Table 2). The contact area is assumed to be frictionless.

Using a classical Lagrangian formulation with a very simple discretization (24 mixed quadrangular
elements: Q4P0) procedure leads at the end of the calculation to a reduction of about 25% in height.
This is due to the severe contact conditions around the tool edge. In ALE formulation, this problem can
be overcome with an adaptive mesh.

The work-piece is divided into two macroregions (Fig. 4):

. Macroregion I (under the tool) is taken to be Eulerian. Master lines 1, 2, 5 are updated Eulerian: the
nodal coordinate in the vertical direction is given by the tool displacement and in the horizontal
direction, it remains the same. Master line 4 is purely Eulerian (no displacement).

. Macroregion II (with a free surface) is taken to be ALE. Master lines 3 and 7 are remeshed with a
constant element size. Master line 6 is a mirror image of master line 7 (same coordinate in the
horizontal direction and 0 in the vertical direction).

The vertical positions of the nodes are given by the position of the tool in order to ensure that the size
of the elements is constant. Material particles ¯ow out from macroregion I to macroregion II.

Fig. 5 shows the deformed mesh obtained after a 30% height reduction, using the ALE formulation.
The e�ective plastic strain patterns are presented in Figs. 6 and 7 using the two remapping methods

after a 30% height reduction.
As we can see, the choice of con®guration made when transferring the data does not a�ect the results,

except that the calculations are made with 31 increments and 137 iterations when remapping onto the
initial con®guration and with 31 increments and 140 iterations onto the current con®guration. This
di�erence is due to the structural equilibrium iterations necessary in the case of Ct remapping. We,
therefore, use the C0 remapping technique.

In order to compare these results with those of a classical Lagrangian formulation, we used the more
re®ned mesh with 1650 elements (1280 under the tool) shown in Fig. 8. The deformed mesh is shown in
Fig. 9 after a height reduction of 30%. The calculation was carried out with 191 increments and more
than 300 iterations!

In conclusion, the ALE formulation developed here was introduced into a Lagrangian computation
code, in order to treat problems associated with mesh distortions. Modeling the coining process using a
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coarse mesh gives comparable results to those obtained with a very ®ne mesh in Lagrangian
formulation.

6. Low friction for lubricated contact

Successful metal forming operations depend on process parameters such as the contact pressure and
forming speed and on material parameters such as the material properties of the work-piece and the
surface properties of the tool and work-piece. In addition, with these parameters, the lubrication is an
important factor in the process: appropriate lubrication reduces the friction and prevents wear and tear
in both the workpiece and the tool.

Nevertheless, in numerical simulation, the focus has been on the behavior of the structure and only
simple friction laws (the Coulomb law with a constant coe�cient is the most commonly used) have been
introduced up to now.

Here, we present a friction model corresponding to the shearing of a lubricant ®lm and depending on

Fig. 2. Remapping on the initial con®guration (for one element).

Fig. 3. Remapping the current con®guration.
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internal interface parameters such as the surface roughness, the viscosity and the thickness of the

lubricant ®lm and on external interface parameters such as the contact pressure and the surface velocity.

Consequently, the value of the friction coe�cient depends on the amount of lubricant present between

the two surfaces. Upon comparing the ®lm thickness (h ) and the rough mean square (R.M.S) (Rq ) of

the surface roughness, we can distinguish three lubrication regimens:

. The hydrodynamic lubrication regimen when hr3Rq: This regimen is characterized by a very low

friction coe�cient. The surfaces are completely separated by the ®lm of lubricant, which prevents any

metal/metal contact. The load is completely carried by the lubricant. In the hydrodynamic regimen,

two subregimens can be said to exist: a fully hydrodynamic one (FHL) where hr10Rq, and an

elastohydrodynamic one (EHL) where 3RqRh < 10Rq: In EHL lubrication, even if contact does not

occur, the roughness a�ects the lubricant ¯ow.

. The boundary lubrication regimen (BL) when hRRq: In this case, physical contact occurs between the

interacting surfaces, and the load is carried entirely by the surface roughness peaks which are in

physical contact with each other. This regimen is characterized by a very high friction coe�cient,

which results from complex surface interactions: the shearing of asperities, chemical interactions, etc.

. The mixed lubrication regimen (ML) where Rq < h < 3Rq: This is the regimen in between the

hydrodynamic and boundary ones. The load on the interface is partly carried by the lubricant and

partly by the interactions between metal surfaces. In this case, the following two phenomena are

mainly involved:
* Dry friction at the e�ective contact part of the surface,
* EH lubrication in the valley.

The mixed regimen, therefore, has to be studied at the asperity scale, whereas the hydrodynamic and

Fig. 4. Geometry of coining process.

Table 2

Material properties of the coining process

Dimensions Length = 8 mm

Width = 3 mm

Tool length = 4 mm

Material properties E = 210,000 MPa

m � 0:3
A0��ep� � 250� 10000�ep
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boundary ones can be studied on the workpiece scale (see, for example, Hu et al., 1994; Wilson and
Marsault, 1998; Wilson and Wang, 1984).

6.1. Modeling the ¯ow in hydrodynamic and elastohydrodynamic lubrication

The following assumptions were made to render the analysis tractable:

. The lubricant is Newtonian with constant viscosity Z:

. The ¯uid ¯ow is laminar.

. The lubricant is incompressible.

. The surfaces are smooth.

. Thin ®lm hypothesis: the ®lm thickness h is small in comparison with the length of the lubricated
zone.

Under these assumptions, the classical Naviers±Stokes equations lead to the Reynolds equation used to
describe thin ®lm ¯ows, which is written here for the 2D-case:

@

@x

 
h3

12Z
@P

@x

!
� @h

@t
� @�hUx�

@x
�31�

This equation gives the ®lm thickness h depending on the pressure in the lubricant P, the velocities of
the two surfaces (with Ux the sum of the surface velocities: Ux � �1=2��Ua �Ub�� and the lubricant

Fig. 5. Deformed mesh in ALE formulation.

Fig. 6. �ep with C0 remapping.
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viscosity Z: This equation is fairly e�ective in lubrication processes between smooth surfaces or when the
asperities do not a�ect the ¯ow, as in the completely hydrodynamic regimen. In order to account for the
surface roughness (EHL regimen), an average Reynolds equation developed by Patir and Cheng (1978)
is used:

@

@x

 
Fx

h3m
12Z

@ �P

@x

!
� @h

@ t
� @ �hmUx�

@x
� 1

2

@
ÿ
VxRqFs

�
@x

�32�

where hm is the ®lm thickness between the mean surfaces and the real ®lm thickness is given by
h � hm � da � db, where da (resp. db� is the amplitude of the surface roughness a (resp. b ) (see Fig. 10).
Vx is the relative surface velocity Vx � Ua ÿUb and �P the average pressure between the mean surfaces.

Fig. 7. �ep with Ct remapping.

Fig. 8. Initial mesh for Lagrangian calculation.

Fig. 9. Deformed mesh for Lagrangian calculation.
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The e�ects of the surface roughness are dealt with by introducing Fx, and Fs, which are ¯ow factors
depending on the ®lm thickness h and on the asperity geometries via Rq and the Peklenik number g: Fx

is the pressure ¯ow factor which characterizes the mean presure ¯ow in the rough case, based on that
determined in the smooth case with the same nominal geometry.

Fx � 1ÿ CeÿrH pour gR1

Fx � 1ÿ CH ÿr pour g > 1 �33�
Coe�cients C and r depend on g and H � h=Rq: Elastohydrodynamic lubrication with isotropic
roughness leads to:

H > 0:5, g � 1 �) C � 0:9 and r � 0:56

In Eq. (32), @�VxRqFs�=@x is an additional term due to the combined e�ects of roughness and sliding.
The shear ¯ow factor Fs is a function of parameters depending on each of the surfaces:

Fs �
 
Ra

q

Rq

!2

f
ÿ
H, ga

�ÿ  Rb
q

Rq

!2

f
ÿ
H, gb

�
�34�

Ri
q is the R.M.S associated with the surface i and Rq the combined one, f is a positive function of H,

and gi the Peclenik number associated with surface i:

f � A1H
a1eÿa2H�a3H

2

for HR5

f � A2e
ÿ0:25H for H > 5 �35�

In elastohydrodynamic lubrication with isotropic roughness, coe�cients A1, A2, A3, a1, a2 and a3 are
given by:

A1 � 1:899, A2 � 1:126, a1 � 0:98, a2 � 0:92 and a3 � 0:05

Although the Patir and Cheng model is the most commonly used model, various ¯ow factor expressions
have also been established by other authors (see, for example, Peeken et al., 1997; Tripp, 1983).

Fig. 10. Schematic surface roughness.
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Comment. In hydrodynamic lubrication, the average Reynolds equation leads to the smooth case
equation with:

H � h

Rq
41 Fx41 Fs40:

6.2. Determination of ®lm thickness

Wilson (see, for example, Wilson and Wang, 1984) has divided the lubricated domain into three
zones: an inlet zone, a work zone and an outlet zone (as presented schematically in Fig. 11). The
amount of lubricant which will be entrained into the work zone depends on the ®lm thickness hB at the
boundary between the inlet and work zones (point B ).

6.2.1. Inlet zone analysis
In the inlet zone, the pressure depends on the lubricant hydrodynamics and increases from the

atmospheric value to a maximum at the boundary between the inlet and work zones. The surfaces are
rigid and the tools do not a�ect the lubricant ¯ow. Their geometries do, however, a�ect the shape of the
®lm lubricant in the neighbourhood of point B. The problem is set as a quasi-steady one and the
average 2D Reynolds equation (32) is written:

d

dx

 
Fx

h3m
12Z

dP

dx

!
� d�hmUx �

dx
�36�

Assuming the pressure, pressure gradient, velocity and pressure ¯ow factor to remain constant keeping
the values reached at the boundary between the inlet and work zones, the ®lm thickness hBm is
determined by:

2FB
x

�PBh
B
mtga� 12ZU B

x � FB
xh

B 2

m
�P
0
B � 0 �37�

This second degree equation is solved, given the ®lm thickness hBm:

hBm �
ÿ �PBtgaFB

x �
����
D
p

�P
0
BF

B
x

�38�

where D � � �PBtgaFB
x �2 ÿ 12ZU B

x
�P
0
BF

B
x :

6.2.2. Work zone analysis
Under the tool, the domain occupied by the lubricant is called the work zone. In the Reynolds

equation (32), the gradient of the Poiseuille term: �h3m=Z��@P=@x� is negligible in comparison with the
gradient of the Couette term: hmUx (see, for example, Lugt et al., 1993; Wilson and Wang, 1984). In
addition, the velocity and pressure along the contact interface vary slowly in comparison with the ®lm
thickness. The partial derivative equation to be solved is then as follows:

12
@hm
@t
� 6

@

@x
�hmUx � � 6

@
ÿ
VxRqFs

�
@x

� 0 �39�
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Eq. (39) is a hyperbolic equation which can be solved using a characteristic method. Along the curve
de®ned by:

dx

dt
� 1

2
Ux �40�

the Eq. (39) takes the form:

dhm
dt
� Chm �D �41�

where C � ÿ�1=2��@Ux=@x� and D � ÿ�1=2��@ �VxRqFs�=@x�: An analytical integration of Eq. (41) gives:

hm �
ÿ
Ch0 �D

�
eC
�tÿt0 � ÿD

C
�42�

At time t 0, the initial condition h0m is given by the inlet zone analysis (i.e. h0m � hBm).
Once the ®lm thickness has been determined, it is necessary to compare hm with Rq in order to

characterize the lubrication regimen:

. If hmr10Rq, this is the completely hydrodynamic regimen. The friction corresponds to the shearing in
the lubricant ®lm. The friction coe�cient is determined using the ratio between the shear stress t and
the pressure P:

t � Z
Vx

hm
� hm

2

@P

@x
�43�

. If 3RqRhmR10Rq, this is the EH regimen. In order to account for the surface roughness, we use
corrector terms in the expression for the shear stress in the lubricant ®lm determined by Patir and
Cheng (1978, 1979):

t � Z
Vx

hm

ÿ
Ff � Ffs

�� hm
2
Ffp

@ �P

@x
�44�

where Ffp is the corrector factor for the mean pressure ¯ow component. Its expression has the same
form as Fx in the average Reynolds equation:

Ffp � 1ÿDeÿsH

Coe�cients D and s depend on the Peklenick number g and if the roughness is isotropic, their values
are:

D � 1:40 and s � 0:66

Fig. 11. Inlet and work zones.
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Ffs, like Fs in the average Reynolds equation, arises from the combined e�ects of the roughness and
sliding:

Ffs �
 
Ra

q

Rq

!2

ffs

ÿ
H, ga

�ÿ  Rb
q

Rq

!2

ffs

ÿ
H, gb

�
with

ffs �
(
A3H

a4eÿa5H�a6H
2

H < 7
0 Hr7

Here, we use:

A3 � 11:1, a4 � 2:31, a5 � 2:38 and a6 � 0:11

The expression for ff, which is the average value of the shear stress sliding velocity component, is
given by:

Ff � 35

32
z

�
�1ÿ z2�lnz� 1

zÿ 1
� z

15

�
66� z2�30z2 ÿ 80�

��
H > 3

Ff � 7

6
H � 3

where z � H=3:
. If hm < 3Rq, a Coulomb constant friction coe�cient is used. This constitutes a considerable

simpli®cation of the phenomema occurring in mixed and boundary regimens. Although the boundary
regimen can be modeled by a constant friction coe�cient, the asperity scale must be studied to
account for the mixed regimen. We decided to study the workpiece scale in order to describe the
metal forming process.

6.3. Numerical implementation

The lubrication was analyzed with the characteristic computational process based on Eulerian
formulation, while the workpiece plasticity was analyzed based on Lagrangian formulation, assuming
that at time tiÿ1, Eqs. (40) and (41) are integrated from the material node (grid node). At time ti, the
end point of the characteristic method solution does not coincide with the same node (see Fig. 12).
Some of the variables (pressure and velocity) necessary for determining the shear stress t are known at
the mesh nodes, whereas the ®lm thickness h is known at the end of the characteristic method
computational process.

In order to overcome this problem, Chen and Sun (1986) have proposed an interpolation. Here, we
use the ALE formulation presented above. After the Lagragian step corresponding to the integration of
Eqs. (40) and (41) and after some structural computation, the Eulerian step is started by remeshing the
structure.

. In the inlet zone, the lubricant does not a�ect the deformation of the structure, and therefore, there is
no remeshing of nodes in this zone.
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. The work zone is treated like an ALE macroregion. Before computing the shear stress t, the
remeshing step relocates the mesh nodes on the contact interface (in 2D the contact interface
constitutes a master line) at the position of the end points of the characteristic computational process.
The trans®nite mapping method is used to generate the internal mesh.

The second part of the Eulerian step consists of transporting the values onto the new mesh. Here, we
use the remapping algorithm on the initial con®guration presented above. The plasticity and lubrication
analyses are linked together at each step in the incremental computation as shown:

. Start of incremental step:
1. Solid part of calculation:

± Determining lubricated zones.
± Computing nodal pressure and velocities.

2. Fluid part of calculation:
± Inlet zone analysis: computing the boundary ®lm thickness hBm:
± Work zone analysis: computing the nodal ®lm thickness hm.

3. ALE part of calculation:
± Remeshing phase: node location is equal to characteristic end point location.
± Transporting value onto the new mesh (structure and ¯uid steps results)

4. Nodal friction coe�cient calculation:
± Characterizing the lubrication regimen.
± Computating the shear stress and friction coe�cient m:

. If convergence is achieved, start the next increment, or go back to (1) with the new friction coe�cient.

7. Numerical examples

7.1. Punch stretch forming test

The ®rst example is a numerical simulation of hemispherical punch stretch forming proposed by Woo
(1993). Fig. 13, gives the geometry of the workpiece and tools. The dimensions and material properties
are described in Table 3.

A 180 elements axisymmetric mesh is used and the work zone under the punch constitutes the

Fig. 12. Paths of characteristic and F.E. nodes.
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remeshed zone according to the characteristic method. The lubricant under the punch is taken to have a
viscosity Z � 0:445 Pa s, and the R.M.S of the workpiece is equal to 0.4 mm. The punch is assumed to
be a rigid, smooth tool, and assumed to move vertically 33 mm.

Fig. 14 shows the deformed mesh at the end of the process. The thinning of the workpiece visible on
the deformed mesh can be seen along the contact zone in Fig. 15, and the maximum is reached at the
center of the sheet, as previously reported by Dubois (1994), based on the low friction coe�cient.

The ®lm thickness evolves in parallel with the deformation of the workpiece. In Fig. 16 and 17, the
®lm thickness is maximum at the center of the sheet. This leads to a hydrodynamic regimen and a very

Fig. 13. Geometry of punch stretch forming.

Table 3

Dimensions and material properties

Dimensions Length = 56.38 mm

Thickness = 0.89 mm

Punch radius, R1 = 25.4 mm

Drawbead radius, R2 = 12.7 mm

Material properties E = 69,004 MPa

m � 0:3
A0��ep� � 589�10ÿ04 � �ep�0:216

Fig. 14. Deformed mesh.
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low friction coe�cient. Along the contact zone, h decreases and friction coe�cient m therefore increases.
Since the mixed regimen is given by a constant friction coe�cient, this leads to the discontinuity visible
in Fig. 17.

7.2. Flat die test

The second example given in Fig. 18 is a classical tribological test with ¯at dies. It consists of two
steps: the sheet is clamped in order to obtain a clamping force of 50 N. In the second step, the sheet is
being drawn with a constant velocity of 16 mm sÿ1, keeping the clamping force constant. The
dimensions and mechanical characteristics are presented in Table 4. The lubricant used has a high
viscosity of Z � 6 Pa s and the R.M.S of the sheet is 2.5 mm. The main di�culty arising in this test is

Fig. 15. Thickness strain along contact zone.

Fig. 16. Film thickness along the contact zone.
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shown in Fig. 19. The global friction coe�cient is presented for various drawing values, and two cases
are studied:

. Completely hydrodynamic regimen given here by a classical Reynolds equation.

. Elastohydrodynamic regimen given here by an average Reynolds equation.

As we can see, after an accomodation step, the friction coe�cient oscillates, re¯ecting a stick-slip
phenomenon.

The contact pressure and velocity are given in Figs. 20 and 21 during one oscillation. The real contact
area (where the presssure is maximum and the velocity equal to zero) decrease during the drawing

Fig. 17. Friction coe�cient along the contact zone.

Fig. 18. Geometry of punch stretch forming.

Table 4

Dimensions and material properties

Dimensions Length = 170 mm

Thickness = 0.79 mm

Tool length = 50 mm

Material properties E = 70,000 MPa

m � 0:35
A0��ep� � 540�0:00805� �ep�0:28
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Fig. 19. Global friction coe�cient.

Fig. 20. Pressure along the contact zone.

Fig. 21. Velocity along the contact zone.
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process: increments 1±4. When sliding occurs (increment 5), the velocity is larger at every node along the
contact zone than the prescribed one and the pressure is restored along the contact zone. Since the
clamping force is constant and the friction dissipation is too low to prevent the initial sheet thickness
from being recovered, the workpiece is in the same state at increment 6 as at increment 1.

Locally, the friction coe�cient of one node in the contact zone di�ers from the hydrodynamic value
m � 0:002 and the boundary one m � 0:18: Since the mixed regimen is given by a constant friction
coe�cient, this leads to a discontinuity in the friction coe�cient (Figs. 22 and 23).

Fig. 22. Film thickness during drawing.

Fig. 23. Friction ceo�cient during drawing.
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8. Conclusion

In the present study, a new application of ALE formulation to ¯uid/structure coupling problems is
described. This system of formulation was originally developed in Lagrangian terms for studying the
contact with friction problems arising in metal working processes, and had to be adapted here to the
existing elastoplastic model.

After accounting completely for the large deformation problem using a hyperelastic behavioral law,
the ALE formulation was applied to a solid mechanics problem and found to have advantages over the
classical Lagrangian scheme of formulation; since the simple meshing used is not deformed, no time-
consuming re®nement steps are required.

By modeling the lubricant at the interface, it was possible to establish a local friction coe�cient
depending on the roughness of the metal sheet, the thickness of the ®lm and the pressure and velocity of
the two surfaces involved in the friction. With our numerical model a stick±slip phenomenon was
detected during the plane-to-plane testing.

The scale of the structure was taken to be the only factor limiting the study of the mixed regimens
and that of the boundary regimens to a constant friction coe�cient.
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